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SI Appendix 

 

The supporting information is organized as follows: 

1. Detailed description of all five models. 

 1.1 Combinatorial logic circuits composed of NAND gates (model 1). 

1.2 Feed-forward combinatorial logic circuits composed of several gate types 

(model 2). 

1.3 Integrate-and-fire neural network model (model 3). 

1.4 Continuous function circuits (model 4). 

1.5 RNA secondary structure (model 5). 

2. Definition of evolution time (TFG and TMVG). 

3. Speedup comparison on all scenarios of varying goals 

(MVG,RVGV,RVGC,VG0). 

4. Different measures of TFG and TMVG and their impact on speedup measures. 

5. Performance comparison with multi-objective optimization scenarios. 

6. Effects of simulation parameters on the speedup. 

7. Speedup under MVG using a hill climbing algorithm.   

 

 

1. A detailed description of the five model systems 

 

We used standard genetic algorithms to evolve four well-studied computational 

network models and a well-studied structural model of RNA. The settings of the 

simulations were as follows: A population of Npop individuals was initialized to 

random binary genomes of length B bits (random nucleotide sequences of length B 

bases in the case of RNA). In each generation all of the individuals in the population 

were evaluated, and the top L circuits passed unchanged to the next generation [elite 

strategy (1)]. The L worst circuits were replaced by a new copy of all of the elite 

circuits. Pairs of circuits were recombined (using crossover probability of Pc), and 

then each circuit was randomly mutated (mutation probability Pm per genome). Each 

experiment was run for a maximal number of generations (Gmax). A simulation could 

terminate in less than Gmax generations, if the fitness threshold (TH) was achieved for 

the goal (or for all goals in case of MVG evolution). 
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1.1 Combinatorial logic circuits composed of NAND gates (model 1) 

 

Genome description. A binary genome of B = 265 bits, composed of 27 genes, which 

coded for 26 2-input NAND gates and a single output interface (270 bits and 28 

genes, in the case of 2-output circuits). Each gene on the genome was composed of 

two input fields encoding for the input connection. Genome and genotype-phenotype 

mapping are described in SI Fig. 6. 

 

Fitness calculation. Goals were Boolean functions. Each goal was defined by a 6-

input truth table (with 2
6
 = 64 entries). Each circuit in the population was evaluated 

on all possible input values combinations. The fitness was the relative number of 

correct entries in the truth table. Thus, a perfect circuit had fitness = 1. A fitness 

penalty of 0.05 was given for every additional gate above a predefined number of 

effective gates (21 gates for the simulations in the paper), where we define ‘effective 

gates’ as gates with a directed path to the output. 

 

 

Figure 6. Model 1 genome description. The binary genome is composed of n + 1 

genes: n genes that code for gates (here, n = 26) and a single gene that codes for the 

output. Inputs address codes were translated as follows: 0.5 ≥ inputs (x,y,z,w,p,q), 

6.31 ≥ gates 1.26. 

 

Varying goals scenarios. Three scenarios were simulated: 
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(i) The goal changed between eight 6-input 1-output goals G1-G8 of the form G = 

F(M1,M2,M3) where M1 = x XOR y, M2 = w XOR z and M3 = p XOR q. The goals 

switched in a probabilistic manner as a random walk on a graph (see SI Fig. 7). Epoch 

time (time between goal switches) was E = 20 generations. 

 

G1 = (M1 AND M2) AND (M2 AND M3) 

 

G2 = (M1 AND M2) AND (M2 OR M3) 

 

G3 = (M1 OR M2) AND (M2 AND M3) 

 

G4 = (M1 OR M2) AND (M2 OR M3) 

 

G5 = (M1 AND M2) OR (M2 AND M3) 

 

G6 = (M1 AND M2) OR (M2 OR M3) 

 

G7 = (M1 OR M2) OR (M2 AND M3) 

 

G8 = (M1 OR M2) OR (M2 OR M3) 

 

 

Note that each switch imposed a change of a single ‘module’ in the goal. The function 

F is thus composed of 3 ‘modules’ (combinations of AND and OR operations). 

 

(ii) The goal changed between four  6-input 2-output goals G9-G12 of the form G = 

{F1(M1,M2,M3); F2(M1,M2,M3)}. M1, M2 and M3 defined as in (i).The goals 

switched in a probabilistic manner as a random walk on a graph (see SI Fig. 7). Epoch 

time was E = 20 generations. 

 

G9 = {M1 AND M2; M2 AND M3} 

 

G10 = {M1 AND M2; M2 OR M3} 
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G11 = {M1 OR M2; M2 AND M3} 

 

G12 = {M1 OR M2; M2 OR M3} 

 

Note that each switch imposed a change of a single ‘module’ in the goal. 

 

(iii) Goals G13-G16 where defined similarly to (ii), but with M1 = x EQ y, M2 = w 

EQ z and M3 = p EQ q (where EQ is the equal logic function). 

 

Genetic algorithm settings. B = 265; Npop = 2000; L = 500; Pc = 0.5; Pm = 0.5; Gmax = 

3 × 10
6
; TH = 1. 

 

Evolution time estimation. TFG estimation was based on 30 experiments for each of 

the 16 goals. TMVG estimation was based on 30 experiments for each of the three 

MVG scenarios (i-iii). TRVG estimation was based on 30 experiments for each one of 

the randomly varying goals scenario. 
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Fig. 7. Modularly varying goals in model 1 (Logic circuits). (a) A schematic 

decomposition of the goal G1 (example of evolved circuits is shown in Fig. S3). (b) 

Scenario (i): 6-input 1-output goals. The goal switched during evolution in a 
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probabilistic manner as a random walk on the 8-node graph. For example if the 

previous goal was G1, the next goal is randomly chosen to be one of its three 

neighbors: G2, G3, or G5. Note that every switch a single AND module is changed to 

OR or vice versa. (c) Scenario (ii): 6-input 2-output goals. The goal switched during 

evolution in a probabilistic manner as a random walk on the 4-node graph. Scenario 

(iii) is similar to (ii) but with EQs instead of XORs. 

 

 

 

Fig. 8. Examples of circuits evolved under fixed and modularly varying goals. (a) A 

circuit composed of NAND gates evolved under fixed goal evolution. The 6-input 

goal was G1 = F(M1,M2,M3) = (M1 AND M2) AND (M2 AND M3) where M1 = x 

XOR y, M2 = w XOR z and M3 = p XOR q. (c) A circuit evolved under MVG that 

solves goal G1 [using scenario (i)]. Note that the circuits evolved under MVG have 

modular structure, with one module corresponding to each of the subproblems shared 

by the varying goals (XOR in this case) (2). 

 

1.2 Feed-forward combinatorial logic circuits composed of several gate types 

(model 2) 

 

Genome description. A binary genome of B = 112 bits composed of 15 genes (108 

bits and 14 genes for the 2-ouput version), which coded for fifteen 2-inputs logic 
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gates arranged in 4 layers with 8,4,2,1 gates (3 layers with 8,4,2 gates for the 2-output 

version). Connections were from each layer to the next layer only. The output was 

defined as the output of the gate(s) in the last layer . Each gene was composed of three 

fields: one encoded for the gate type (AND, OR or NAND) and two fields encoded 

for the input connections. Genome and genotype-phenotype mapping are described in 

SI Fig. 9. 

 

 

 

Fig. 9. Genome description (model 2 and model 4). The binary genome is composed 

of 15 genes. Each gene codes for a gate. The gates were arranged in a feed-forward 

manner in four layers. Each gene had three fields: a field that encoded the gate type 

and two input fields encoding for the inputs using the index of the gate in the previous 

layer. The gate type in model 2 was of 2 bits with the following mapping: 00: AND; 

01: OR; 10: NAND; 11: AND. The gate type in model 4 was of 2 bits in the following 

mapping: 00 :xy; 01: x + y - xy; 10: 1 - xy; 11: xy. Output was defined as the 4th layer 

single gate output. 

 

 

 

Fitness calculation. Goals were Boolean functions. Each goal was defined by a 6-

input truth table (with 2
6
 = 64 entries). Each circuit in the population was evaluated 
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on all possible input values. The fitness was the relative number of correct entries in 

the truth table. A perfect circuit thus had fitness = 1. A fitness penalty of 0.05 was 

given for each additional gate above 12 gates (for the 1-output goals) or 11 gates (for 

the 2-outputs goals). 

 

Genetic algorithm settings. B = 112; Npop = 700; L = 200; Pc = 0.5; Pm = 0.7; Gmax = 

10
6
; TH = 1. 

 

Evolution time estimation. TFG estimation was based on 30 experiments for each of 

the different 12 goals. TMVG estimation was based on 50 experiments for each of the 

scenarios. TRVG was based on 30 experiments for each of the goals under each 

scenario. 

 

Feed-forward combinatorial logic circuits composed of several gate types (model 

2 - small version) 

This model was studied mainly because its genome is small enough to allow a 

complete mapping of the fitness landscape, as described in the main text. 

 

Genome description. A binary genome of 38 bits, composed of 7 genes, which coded 

for seven 2-inputs logic gates arranged in three layers with 4,2,1 gates. Connections 

were from each layer to the next layer only. For the results described in the paper the 

input connections of the last gate were fixed (connected to the outputs of the two 

gates in the previous layer). 

 

Fitness calculation. Goals were Boolean functions. Each goal was defined by a 4-

input truth table (with 2
4
 = 16 entries). 

 

Genetic algorithm settings. B = 38; Npop = 100; L = 30; Pc = 0; Pm = 0.7; Gmax = 10
7
 

and TH = 1. 

 

1.3 Integrate-and-fire neural network model (model 3) 

 

Genome description. A binary genome of 68 bits, composed of 7 genes, coded for 7 

neurons arranged in 3 layers with 4,2, and 1 neurons in a feed-forward manner. Each 
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neuron had two inputs from the previous layer. The output of the network was the 

output of the single neuron in the last layer. Connections were weighted with weights 

in the range -2 to 2. Each neuron summed its weighted inputs and, if the sum 

exceeded a threshold, the neuron fired (outputted a value of one). This is equivalent to 

a step-like transition function. Genome and genotype-phenotype mapping are 

described in SI Fig. 10. 

 

 

Fig. 10. Model 3 genome description. The binary genome was composed of seven 

genes. Each gene encoded for a neuron. The neurons were arranged in a feed-forward 

manner in three layers. Each gene had five fields: a field that encoded the threshold of 

the transition function; two fields encoded for the inputs using the index of the gate in 

the previous layer; two fields coded for the connection weights. The threshold field 

was of 2 bits in the following mapping: 00: Pth = -2; 01: Pth = -1; 10: Pth = 1; 11: Pth = 

0. Each weight field was of 3 bits in the following mapping: 000: W = -2; 001: W = -

1.5; 010: W = -0.5; 011: W = -1; 100: W = 2; 101: W = 1.5; 110: W = 0.5; 111: W = 

1. Note that this mapping represents a smooth mapping (gray code). Output was 

defined to be the 3rd layer neuron output. 

 

Goal description. We used a simple biological model for the problem of detecting 

combinations of morphogens levels by a cell. Neurons schematically represent 

signaling proteins in the cell. The proteins were arranged in 3 layers representing 

different cellular localizations: 4 membrane proteins that act as receptors (layer 1), 2 
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cytoplasmic proteins (layer 2) and a single nuclear protein - a transcription factor 

(layer 3). Each protein had two binding sites where proteins of previous layer were 

free to bind. The output of the network was determined by the activity of the 

transcription factor. This simple model was suggested to represent the essentials of 

simple signal transduction networks in proteins (3,7). 

 

Fitness calculation. Each of the four network inputs (morphogens) could be present at 

three levels: low, medium and high. The goal was to decide if a specific combination 

of morphogen levels is satisfied (SI Fig. 11). The fitness was defined as the relative 

number of correct decisions over all possible combinations of morphogen levels. A 

'perfect' network had fitness = 1. 

 

Varying goals scenarios. The goals were chosen such that they could be decomposed 

into a combination of two subgoals S1 and S2. MVG was applied by switching 

between R = AND and R’ = OR combination of 8 different 2-morphogen subgoals 

(see SI Fig. 11). The goal was switched every E = 20 generations. 

 

Genetic algorithm settings. B = 68; Npop = 1000; L = 300; Pc = 0.5; Pm = 0.9; Gmax = 

10
7
; TH = 0.98. 

 

Evolution time estimation. TFG estimation was based on 30 experiments for each of 

the 16 different goals. TMVG estimation was based on 40 experiments for each of the 8 

scenarios. TRVG was based on 30 experiments for each of the goals under each 

scenario. 
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Fig. 11. Varying goals for neural network model (model 3). (a) Each subgoal had 2 

inputs (two morphogens). Morphogen concentrations could be of three levels: Low, 

Medium, and High represented by L, M, and H respectively. Each subgoal (S1, S2) 

identifies a unique combination of the two morphogens levels; (white = 0,black = 1). 

(b) The goal was to decide whether a combination of two subgoals was identified. We 

used different combinations of the two 8-subgoals described in a, where we switched 

between R = AND and R’ = OR combination of subgoals every E = 20 generations.      

 

1.4 Continuous function circuits (model 4): 
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Genome description. A binary genome of B = 112 bits composed of 15 genes (108 

bits and 14 genes for the 2-ouput version), which coded for fifteen 2-inputs 

continuous function gates arranged in 4 layers with 8,4,2,1 gates (3 layers with 8,4,2 

gates for the 2 output version). Connections were from each layer to the next layer 

only. The output was defined as the output of the gate(s) in the last layer. Each gene 

was composed of three fields: one field for the function type (of 3 possible 

polynomial functions: xy, 1 - xy, x + y – xy, that represent continuous versions of 

AND, NAND and OR gates respectively) and two fields for the inputs. Genome and 

genotype-phenotype mapping are described in SI Fig. 9. 

 

Fitness calculation. The goals were defined as multivariate polynomials of 6 variables 

x, y, w, z,  p, q. For fitness evaluation each input was sampled uniformly from the 

interval [0,1]. For the results presented in the paper we used 4 samples per input. The 

fitness was defined as –one minus the mean relative distance of the outputs and the 

goal values (an approximation of the integral of the difference between the network 

computation and the goal function on the interval [0,1] of all inputs). A perfect circuit 

had fitness = 1. However in the current settings perfect circuits often do not exist, 

therefore we chose a threshold TH = 0.98. 

 

Varying goals scenarios. Three scenarios were simulated: 

 

(i) The goal changed between eight 6-input 1-output goals G1-G8 of the form G = 

U(T1,T2,T3). The varying goal switched in a probabilistic manner as a random walk 

on the graph (in a similar manner as described in SI Fig. 7). Epoch time was E = 20 

generations. 

 

G1 = (T1 ⋅ T2) ⋅ (T2 ⋅ T3) 

 

G2 = (T1 ⋅ T2) ⋅ [T2 + T3 - T2 ⋅ T3] 

 

G3 = (T1 + T2 - T1 ⋅ T2) ⋅ (T2 ⋅ T3) 

 

G4 = (T1 + T2 - T1 ⋅ T2) ⋅ (T2 + T3 - T2 ⋅ T3) 
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G5 = T1 ⋅ T2 + T2 ⋅ T3 - [(T1 ⋅ T2) ⋅ (T2 ⋅ T3)] 

 

G6 = T1 ⋅ T2 + (T2 + T3 - T2 ⋅ T3) - [(T1 ⋅ T2) ⋅ (T2 + T3 - T2 ⋅ T3)] 

 

G7 = (T1 + T2 - T1 ⋅ T2) + (T2 ⋅ T3) – [ (T1 + T2 - T1 ⋅ T2) ⋅ (T2 ⋅ T3) ] 

 

G8 = (T1 + T2 - T1 ⋅ T2) + (T2 + T3 -T2 ⋅ T3) – [(T1 + T2 - T1 ⋅ T2) ⋅ (T2 + T3 -T2 ⋅ 

T3)] 

 

where T1 = x + y - 2xy, T2 = w + z - 2wz and T3 = p + q - 2pq. Note these polynomial 

functions represent continuous versions of XOR functions. 

 

Note that each switch imposed a change of a single ‘module’ in the goal. 

 

(ii) The goal changed in a probabilistic manner between four 6-input 2-output goals 

G9-G12 of the form G = {U1(T1,T2,T3); U2(T1,T2,T3)}. The goals switched in a 

probabilistic manner as a random walk on the graph (similar to SI Fig. 7). Epoch time 

was E = 20 generations. 

 

G9 = {T1 ⋅ T2; T2 ⋅ T3} 

 

G10 = {T1 ⋅ T2; T2 + T3 - T2 ⋅ T3} 

 

G11 = {T1 + T2 - T1 ⋅ T2; T2 ⋅ T3} 

 

G12 = {T1 + T2 - T1 ⋅ T2; T2 + T3 - T2 ⋅ T3} 

 

where T1 = x + y - 2xy, T2 = w + z - 2wz and T3 = p + q - 2pq. 

 

Note that each switch imposed a change of a single ‘module’ in the goal. 
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iii) Goals J13-J16 where defined similarly to (ii), but with T1 = 1 + 2xy - x - y, T2 = 1 

+ 2wz - w - z and T3 = 1 + 2pq - p - q. Note these polynomial functions represent 

continuous versions of EQ functions. 

 

Genetic algorithm settings. B = 112; Npop = 700; L = 200; Pc = 0.5; Pm = 0.7; Gmax = 

10
5
; TH = 0.98. 

 

Evolution time estimation. TFG estimation was based on 30 experiments for each of 

the different goals. TMVG estimation was based on 30 experiments for each of the 

scenarios. TRVG estimation was based on 30 experiments for each goal under each 

RVG scenario. 

 

1.5 RNA secondary structure (model 5): 

 

Genome description. A fixed length genome of B nucleotides. Each position could be 

occupied by one of the four bases A, U, G, or C. We used well established tools for 

secondary structure prediction (4) available as part of the Vienna software package at 

www.tbi.univie.ac.at/RNA/. 

 

Fitness calculation. The goal is a defined RNA secondary structure. The fitness 

represents the similarity of the current structure to the goal structure. We considered 

the minimal free energy (MFE) structure as the predicted structure of the molecule. 

We used a ‘tree edit’ distance measure as defined in the Vienna RNA package to 

evaluate the difference between the structure of the RNA molecule and the goal 

structure. The fitness is defined as F = 1 - d/B, where d is the distance and B is the 

sequence length. A fitness F = 1 reflects 100% similarity in structure. 

 

Varying goals scenarios. We present here results of two MVG simulations each one 

with 4 goals. 

 

(i) The main goal G1 was a natural tRNA secondary structure (the phenylalanine 

tRNA of  S. cerevisiae, SI Fig. 12a). If one considers a hairpin as a structural module 

(4), the goal G1 includes three such modules. Modularly varying variants of G1 were 

obtained by changing each of the three hairpins to an open loops (SI Fig. 13). Epoch 



 15 

time was E = 20 generations. Note that each switch imposed a change of a single 

‘module’ in the goal. 

 

(ii) As (i) but the main goal was a synthetic structure of length 61 nucleotides (SI 

Fig. 12b) composed of three different hairpin-like substructures. 
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Fig. 12. Evolutionary goals defined as Secondary structure of RNA. (a) A 

phenylalanine tRNA in S. cerevisiae. (b) A synthetic structure of three different 

hairpin-like substructures. 

 

 

Goal 1 Goal 2 

Goal 3 

Goal 4 
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Fig. 13. Modularly varying goals in the RNA model, a schematic view. The goal 

switched during evolution in a probabilistic manner as a random walk on the 4-node 

graph. Goal 1 (G1) represents a natural secondary structure of tRNA, Goals G2,G3 

and G4 are modular variants of G1. 

 

Genetic algorithm settings. B = 76 nucleotides for scenario (i); B = 61 nucleotides for 

scenario (ii); Npop = 500; L = 150; Pc = 0; Pm = 0.7; Gmax = 2x10
5
; TH = 1. (In model 

5 we used independent mutation probabilities per locus and not per genome, thus 

mutation rate per locus was Pm/B). 

 

Evolution time estimation. TFG estimation was based on 40 experiments for each of 

the different goals. TMVG estimation was based on 40 experiments for each of the 

scenarios. TRVG estimation was based on 20 experiments for each goal under each 

RVG scenario. 

 

 

Fig. 14. Fitness through evolution in the RNA model. Maximal fitness in the 

population (Mean± SE) vs. generations in evolution under MVG (red) and Fixed Goal 

(black). The presented fitness is of goal G1 scenario i (natural tRNA). In the MVG, 
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the fitness presented is for epochs when the goal was the wild-type tRNA structure 

(G1). Fitness data are for 40 simulations in each scenario. 

 

2. Definition of evolution time (TFG and TMVG) 

 

We define evolution time (T) as the median number of generations that is required to 

achieve the goal (to reach a fitness higher than a predefined threshold TH, where in 

most cases studied here TH = 1). To estimate T under fixed goal (FG) we ran the same 

experiment many times and calculated the median of the T distribution. Thus, T is the 

required number of generations such that the fitness threshold is reached with 

probability 0.5. If an experiment ended before the fitness threshold was achieved, T 

was considered as Gmax. In evolution under modularly varying goals (MVG), we 

computed T for each of the different varying goals. Note that in MVG T is the total 

number of generations passed from the beginning of the simulation, and includes also 

epochs for the other goals (we do not subtract these). In RVG we referred only to the 

main goal, rather than the random goals. To estimate T and its error bars we used a 

bootstrap method to evaluate the median and its confidence interval (with alpha = 

0.32 two sided). For the bootstrap we used 999 samples. SI Fig. 15 shows a typical 

behavior of fitness through evolution under fixed goal and MVG scenarios. 

  

 

Fig. 15. Fitness under fixed and modularly varying goals. Maximal fitness in a 

population of networks under fixed goal (gray) and modularly varying goal evolution 

(blue). Evolution time is defined as the number of generations to reach fitness = 1 (or 

larger than a defined threshold). The goal switched every E = 20 generations. (Inset) 

Zoom into fitness around several goal switching events. 
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3. Speedup comparison on all scenarios of varying goals 

(MVG,RVGV,RVGC,VG0). 

 

SI Fig. 16 summarizes the results for speedup under all varying goals scenarios. 

 

 

Fig. 16. Evolution speedup under varying goals. Evolution speedup under several 

varying goals scenarios. Points in different colors and shapes represent speedup under 

four different scenarios: MVG, RVGV, VG0, and RVGC. Regression lines were 

computed using simple regression. In all scenarios the varying goal changed every 20 

generations. 

 

4. Different measures of TFG and TMVG and their impact on speedup measures 
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We found a qualitatively similar speedup using the median, mean and 

geometric mean as measures for evolution time. The scaling exponent for the speedup 

factor was also qualitatively the same (see SI Fig. 17). 

 

Fig. 17. Evolution Speedup with different measures for evolution time. Results are 

shown for model 1. Speedup scales as a power law with qualitatively similar 

exponents α = 0.7 under all of the three measures. 

 

5. Performance comparison with multiobjective optimization scenarios 

 

We compared the speed of evolution in MVG to four different multiobjective 

scenarios. In the multiobjective scenarios we used the different modularly varying 

goals variants as the objectives, presented simultaneously (rather than varying over 

time as in MVG). 

 

a) Multioutput weighted multiobjective optimization. In this scenario the network had 

multiple outputs, each output corresponds to a goal in the MVG scenario. The 

selection fitness was defined as ∑=

i

ii fwF where if  is the fitness for output i 

(objective i) and iw  is its weight contribution in the aggregate fitness. We used equal 
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weights in the simulations (for example if the number of goals was 2, 5.01 =w  and 

5.02 =w ). 

 

b) Multioutput pareto multiobjective optimization. The network had multiple outputs, 

each output correspond to a goal in the MVG scenario (as in a.). We used pareto-

based fitness assignment as proposed by Goldberg (5). In short, this method assigns 

equal probability of reproduction to all nondominated individuals in the population. 

The method works as follows: assign rank 1 to the nondominated individuals, then 

iteratively remove these nondominated individuals  from contention and repeat 

assigning increasing ranks for each layer of remaining nondominated individuals. The 

selection fitness of each individual was defined as Lr /1−  where r is the rank and L 

is the highest rank at the current generation. 

 

c) Single-output weighted multiobjective optimization. As in a. but the network had a 

single output. 

 

d) Single-output pareto multiobjective optimization. As in b. but the network had a 

single output. 

 

We compared the progress of fitness for a given goal under fixed goals (FG), 

MVG and all four multiobjective scenarios. For a proper comparison we compared 

the fitness of a specific goal under FG with its equivalent in the multiobjective 

scenarios in the following manner: For the multioutput cases we considered the fitness 

of the relevant output only. For the single output scenarios, we considered the highest 

fitness of the relevant goal in the population at each generation (see SI Fig. 18). By 

this one avoids a bias for solutions in the pareto front that have higher preference to 

other objectives. 
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Fig. 18. Fitness extraction for a proper comparison under pareto optimization.  

 

Genetic algorithm settings. 4-inputs 1-output version of model 1. B = 265; Npop = 

2000; L = 500; Pc = 0.5; Pm = 0.5; Gmax =  10
6
; TH = 1. The genome represents a pool 

of up to 26 2-input NAND gates. A fitness penalty of 0.1 was given for circuits with 

more than 11 gates (in the single output scenarios) and 14 gates (in the multioutput 

scenario). 

 

Results. SI Table 2 shows results for a 4-input version of network model 1. We 

compared the speed of evolution for the goal G1 = (x XOR y) AND (w XOR z). The 

MVG scenario was composed of two goals, G1 and G2 = (x XOR y) OR (w XOR z), 

where the goal switched every 20 generations. 

 

We find that MVG showed speedup, whereas all four multiobjective scenarios 

showed virtually no speedup. Scenario (a) was the only scenario which had T < 10
6
 

generations. 

 

Note that the fitness of the single-output weighted multiobjective scenario saturates at 

fitness significantly lower than one. The two pareto scenarios seemed to plateau at 

fitness 0.75 for G1. The reason for this  is that there exist many nondominated trivial 

solutions that reach fitness 0.75 for one of the  goals (e.g., a network that outputs zero 

for all input values has fitness 0.75 for G1). Qualitatively similar results are obtained 

also for other models. A graph of fitness vs. generations for FG, MVG and all 
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multiobjective scenarios is shown in SI Fig. 19 (Fig. 3 in the main text shows FG, 

MVG and scenario a). 

 

Table 2. Evolution time and speedup comparison under MVG and 4 different multiobjective 

scenarios 

 

Scenario Median time (T) Mean time (<T>) Speedup (S) 

Fixed Goal 
1.5 × 10

4
 ± 1 × 

10
4
 

3 × 10
5 

± 3 × 10
4
 - 

MVG 8 × 10
3
 ± 3 × 10

3
 5 × 10

4
 ± 1 × 10

4
 2.2 ± 0.7 

Weighted 

Multi-Objective 
 1× 10

5
± 4 × 10

4
  3 × 10

5
 ± 6 × 10

4
  <1 

Multi 

Output Pareto Multi-

Objective 
>10

6
 >10

6
  <1 

Weighted 

Multi-Objective 
>10

6
 >10

6
  <1 

Single 

Output Pareto Multi-

Objective 
>10

6
 >10

6
  <1 
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Fig. 19. Fitness as a function of time in MVG, fixed goal and all four multiobjective 

scenarios. Maximal fitness in the population (mean ± SE) as a function of generations 

for a 4-input version of model 1 for the goal G1 = (x XOR y) AND (w XOR z). For 

the MVG and multiobjective cases, the second goal was G2 = (x XOR y) OR (w XOR 

z). For MVG, data are for epochs where the goal was G1. For the multiobjective 

scenarios fitness is for G1 as described above. Data are averaged for 20 simulations in 

each case. 

 

6. Effects of simulation parameters on the speedup 

 

We evaluated the speedup in evolution under a wide range of simulation parameters. 

SI Fig. 20 shows the speedup under a range of rates of switching between goals (see 

also Fig. 2 in the main text), and with a different selection strategy [pure fitness-based 

selection as opposed to elite strategy (10)] and with a different mutation policy 

(mutation probability per locus and not per genome). The speedup is smaller than  the 

results presented in the paper (Fig. 2) but the scaling of the speedup remains 

qualitatively similar (α ~ 0.5). 
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Fig. 20. Effect of evolutionary parameters on speedup. (a) Speedup (S = TFG/TMVG) 

under different frequencies of goal switches and with various population size (Npop). 

Selection was pure fitness based. Mutation rate was Pm = 0.7 per genome per 

generation. (b) Different mutation rates (Pm here is per bit per generation). Npop = 100. 

Results are shown for goal G1 = (x XOR y) OR (w XOR z) using model 2. For MVG 
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the varying goal switched between G1 and G2 = (x XOR y) AND (w XOR z) every E 

generations. 

 

7. Speedup under MVG using a hill climbing algorithm 

 

We find that a speedup occurs under MVG also using different algorithms (other than 

genetic algorithms). Here we present results of a simple probabilistic hill-climbing 

algorithm (6) described below. We find that the speedup scales with problem 

difficulty with an exponent α ~ 0.7 in various scenarios of modularly varying goals 

(SI Fig. 21). 

 

Hill climbing algorithm description. Population size equals 1 (a single circuit). At 

each generation, the fitness of all possible B mutations (neighbors) is calculated 

(denoted Fi). Then one mutation is randomly chosen according to the following 

distribution (as in Metropolis Monte Carlo algorithms (8)): P = exp(Fi/t) / Z, where 

here Z is a normalizing factor (so that the sum of all P equals 1). The parameter t, is 

referred to as the temperature. For very large t, this becomes a random walk (as all 

mutations have equal probability). For very small t, it becomes deterministic hill-

climbing as the mutation with the highest fitness is always chosen. 
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Fig. 21. Speedup under MVG using a hill-climbing algorithm. Each point represents a 

speedup of a different goal. Goals were various 4-input 1-output Boolean functions 

(model 2, small version). We chose goals that could be decomposed into two 2-input 

1-output Boolean functions (denoted by F1, F2). For MVG the goal was switched 

every E = 20 generations between G1 = F1 AND F2 and G2 = F1 OR F2. Speedup 

scales as a power law with exponent α = 0.7. Results shown for T = 0.03. 
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